SFLOG Init

Last Modified on 01/18/2017 10:22 pm CST

C/C++
Net

int __stdcall SFLOG_Init(LPCTSTR szAppName,

LPCTSTR szLogDir
)

This routine initialize the Logging system. This is often the first API call that an application makes and
is a prerequisite for other logging APls.

Parameters

[in]szAppNameis the application name (user-defined), but must match the configuration base
filename
[in]szLogDir is the directory path to use for storing logging file and temporary files.

Returns

status code of the operation

Return values
NDK_SUCCESS Operation successful
NDK_FAILED Operation unsuccessful. See Macros for full list.

Remarks

e The value of the application name argument (i.e. szAppName) must match the name of the
configuration file. The confguration file must exist in the same folder as your application
executable file (e.g. MyApp.exe)

e [f the value of szLogDir is missing (empty or NULL), the function will use the default temp
directory in the current user's profile.

e The logging system uses reference count to manage the system lifetime and support multiple
clients to obtain and release access to the system without conditioning on one another in
managing the system lifetime.

e For custom application, if you use NDK_Init, then you don't need to invoke this function in
your application. The NDK_init will initialized the logging system on your behalf.

e For multiple concurrent running processes (e.g. custom application, NumXL Add-in, etc.), the

logging system will open/create a separate log file (with a unique suffix) for each process.

Requirements



Header | SFLogger.H

Library = SFLOG.LIB

DLL SFLOG.DLL

Examples

#include

#include

// Link with SFLOG.lib
#pragma comment ("1ib", "SFLOG.lib")

using std;

void main (void)
{
int nRet= NDK_FAILED;

string szAppName="MyLogExample";
string szPath = "C:\\temp";

nRet = SFLOG Init( szAppName.c str(), // Application name (used for log file
name (e.g. MyLogExample.log)).

szPath.c_str()); // log directory where log files are created

if ( nRet >= NDK_SUCCESS)

{

// Is the log system initialization OK?

NDK_RET CODE Init(string szAppName, Namespace: NumXLAPI
string szLogDir Class: SLOG
) Scope: Public

Lifetime: Static

This routine initialize the Logging system. This is often the first API call that an application makes and
is a prerequisite for other logging APIs.

Parameters
[in]szAppNameApplication name (e.g. TestApp).
[in]szLogDir Temporary directory to use for storing logging file and intermediate files.



Return Value

a value from NDK_RET CODE enumeration for the status of the call.

NDK_SUCCESS operation successful

Error

Remarks

Error Code

e The value of the application name argument (i.e. szAppName) must match the name of the

configuration file. The confguration file must exist in the same folder as your application

executable file (e.g. MyApp.exe)

¢ If the value of szLogDir is missing (empty or NULL), the function will use the default temp

directory in the current user's profile.

e The logging system uses reference count to manage the system lifetime and support multiple

clients to obtain and release access to the system without conditioning on one another in

managing the system lifetime.

e For custom application, if you use SFDK.Init, then you don't need to invoke this function in

your application. The SFSDK.init will initialized the logging system on your behalf.

e For multiple concurrent running processes (e.g. custom application, NumXL Add-in, etc.), the

logging system will open/create a separate log file (with a unique suffix) for each process.

Exceptions

Exception Type | Condition

None

Requirements

Namespace

Class

Scope

Lifetime

Package

Examples

N/A

NumXLAPI

SFLOG

Public

Static

NumXLAPI.DLL



using NumXLAPI;

NDK RETCODE retCode = NDK RETCODE.NDK FAILED;

string szAppName = "RastPro";
retCode = NumXLAPI.SFLOG.Init (szAppName, null);
if (retCode

See Also
[template("related")]



