NDK EGARCH GOF

Last Modified on 01/07/2017 11:20 am CST

- C/C++
- .Net

```
int stdcall NDK EGARCH GOF(double *
                                             pData,
                               size_t
                                             nSize,
                               double
                                             mu,
                               const double * Alphas,
                               size t
                                             p,
                               const double * Gammas,
                               size t
                                             g,
                               const double * Betas,
                               size t
                               WORD
                                             nInnovationType,
                               double
                                             nu,
                               WORD
                                             retType,
                               double *
                                             retVal
                              )
```

Computes the log-likelihood (LLF), Akaike Information Criterion (AIC) or other goodness of fit function of the GARCH model.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See Macros for full list.

Parameters

is the univariate time series data (a one dimensional array).
is the number of observations in pData.
is the E-GARCH model conditional mean (i.e. mu).
are the parameters of the ARCH(p) component model (starting with the
lowest lag).
is the number of elements in Alphas array
are the leverage parameters (starting with the lowest lag).
is the number of elements in Gammas. Must be equal to (p-1).
are the parameters of the GARCH(q) component model (starting with
the lowest lag).
is the number of elements in Betas array

[in] nInnovationType is the probability distribution function of the innovations/residuals (see

INNOVATION TYPE)

• INNOVATION GAUSSIAN Gaussian Distribution (default)

• INNOVATION TDIST Student's T-Distribution,

• INNOVATION_GED Generalized Error Distribution (GED)

[in] **nu** is the shape factor (or degrees of freedom) of the

innovations/residuals probability distribution function.

is a switch to select a fitness measure (see

GOODNESS_OF_FIT_FUNC)

[out] retVal is the calculated goodness of fit value.

Remarks

1. The underlying model is described here.

2. The Log-Likelihood Function (LLF) is described here.

- 3. The time series is homogeneous or equally spaced.
- 4. The time series may include missing values (e.g. #N/A) at either end.
- 5. The number of gamma-coefficients must match the number of alpha-coefficients.
- 6. The number of parameters in the input argument alpha determines the order of the ARCH component model.
- 7. The number of parameters in the input argument beta determines the order of the GARCH component model.
- 8. The maximum likelihood estimation (MLE) is a statistical method for fitting a model to the data and provides estimates for the model's parameters.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

int NDK EGARCH GOF(double[] pData,

UIntPtr nSize,

double mu,

double Alphas,

UIntPtr p,

double[] Gammas,

double[] Betas,

UIntPtr q.

short nlnnovationType,

double nu,

Namespace: NumXLAPI

Class: SFSDK

Scope: Public

Lifetime: Static

```
short retType,
ref double retVal
)
```

Computes the log-likelihood (LLF), Akaike Information Criterion (AIC) or other goodness of fit function of the GARCH model.

Return Value

a value from NDK RETCODE enumeration for the status of the call.

NDK_SUCCESS operation successful

Error Code

Parameters

[in]	pData	is	the	univariate	time	series	data	(a	one	dimens	sional	arrav)	١
[]	poata	13	LIIC	univariate	LILLIC	361163	uata	ıα	OHIC	unincin	nonai	array	, ,

[in] **nSize** is the number of observations in pData.

[in] **mu** is the E-GARCH model conditional mean (i.e. mu).

[in] Alphas are the parameters of the ARCH(p) component model (starting with the

lowest lag).

[in] **p** is the number of elements in Alphas array

[in] **Gammas** are the leverage parameters (starting with the lowest lag).

[in] **Betas** are the parameters of the GARCH(q) component model (starting with

the lowest lag).

[in] **q** is the number of elements in Betas array

[in] **nInnovationType** is the probability distribution function of the innovations/residuals (see

INNOVATION TYPE)

• INNOVATION GAUSSIAN Gaussian Distribution (default)

• INNOVATION_TDIST Student's T-Distribution,

INNOVATION GED Generalized Error Distribution (GED)

is the shape factor (or degrees of freedom) of the

innovations/residuals probability distribution function.

[in] retType is a switch to select a fitness measure (see

GOODNESS OF FIT FUNC)

[out] retVal is the calculated goodness of fit value.

Remarks

- 1. The underlying model is described here.
- 2. The Log-Likelihood Function (LLF) is described here.
- 3. The time series is homogeneous or equally spaced.
- 4. The time series may include missing values (e.g. #N/A) at either end.
- 5. The number of gamma-coefficients must match the number of alpha-coefficients.
- 6. The number of parameters in the input argument alpha determines the order of the ARCH component model.
- 7. The number of parameters in the input argument beta determines the order of the GARCH

- component model.
- 8. The maximum likelihood estimation (MLE) is a statistical method for fitting a model to the data and provides estimates for the model's parameters.

Exceptions

Exception Type	Condition				
None	N/A				

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

- * Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6
- * Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740
- * D. S.G. Pollock; <u>Handbook of Time Series Analysis</u>, <u>Signal Processing</u>, <u>and Dynamics</u>; Academic Press; Har/Cdr edition(Nov 17, 1999), ISBN: 125609906
- * Box, Jenkins and Reisel; <u>Time Series Analysis: Forecasting and Control</u>; John Wiley & SONS.; 4th edition(Jun 30, 2008), ISBN: 470272848

See Also

[template("related")]