NDK GARCH RESID

Last Modified on 07/12/2016 11:45 am CDT

- C/C++
- .Net

```
int stdcall NDK GARCH RESID(double *
                                              pData,
                               size t
                                              nSize,
                               double
                                              mu,
                               const double * Alphas,
                               size t
                                              p,
                               const double * Betas,
                               size t
                                              q,
                               WORD
                                              nInnovationType,
                               double
                                              nu,
                               WORD
                                              retType
```

Returns an array of cells for the standardized residuals of a given GARCH model.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK FAILED Operation unsuccessful. See Macros for full list.

Deprecated:

this function is being replaced by NDK GARCH FITTED()

Parameters

[in] **pData** is the univariate time series data (a one dimensional array).

[in] **nSize** is the number of observations in pData.

[in] **mu** is the GARCH model conditional mean (i.e. mu).

[in] **Alphas** are the parameters of the ARCH(p) component model (starting with the

lowest lag).

[in] **p** is the number of elements in Alphas array

[in] **Betas** are the parameters of the GARCH(q) component model (starting with the

lowest lag).

[in] **q** is the number of elements in Betas array

[in] nInnovationType is the probability distribution function of the innovations/residuals

(see INNOVATION_TYPE)

- INNOVATION_GAUSSIAN Gaussian Distribution (default)
- INNOVATION_TDIST Student's T-Distribution,

• INNOVATION GED Generalized Error Distribution (GED)

[in] **nu** is the shape factor (

is the shape factor (or degrees of freedom) of the innovations/residuals

probability distribution function.

[in] retType is a switch to select a residuals-type:raw or standardized.

see RESID RETVAL FUNC

Remarks

1. The underlying model is described here.

- 2. The time series is homogeneous or equally spaced.
- 3. The time series may include missing values (e.g. #N/A) at either end.
- 4. The standardized residuals have a mean of zero and a variance of one (1).
- 5. The GARCH model's standardized residuals is defined as: $[\exp ion_t = \frac{a_t}{\sup_t = x_t \frac{a_t}{\sin_t}}]$
 - $\circ~\mbox{\ \ }\mbox{\ \ \ \ }\mbox{\ \ \ }\mbox{\ \ \ }\mbox{\ \ \ }\mbox{\ \ \ \ \ }\mbox{\ \ \ \ \ \ }\mbox{\ \ \ }\mbox{\ \ \ \ }\mbox{\ \ \ \ }\mbox{\ \ \ }\mbox{\ \ \ }\mbox{\ \ \ \ }\mbox{\ \ \ }\mbox{\ \ \ \ }\mbox{\ \ \ }\mbox{\ \ \ }\mbox{\ \ \ }\mbox{\ \ \ \ }\mbox{\ \ \ \ }\mbox{\ \ \ \ \ }\mbox{\ \ \ }\mbox{\ \ \ \ }\mbox{\ \ \ \ \ }\mbox{\ \ \ \ }\mbox{\ \ \ \ \ }\mbox{\ \ \ \ \ }\mbox{\ \ \ \ \ \ \ \ \ }\mbox{\ \ \ \ \ }\mbox{\ \ \ \ \ }\mbox{\ \ \ \ \ \ }\mbox{\ \ \ \ \ \ \ }\mbox{\ \ \$
 - \(a t\) is the GARCH model's residual at time t.
 - $\circ \ \(x_t)$ is the value of the time series at time t.
 - \(\mu\) is the GARCH mean.
 - \(\sigma_t\) is the GARCH conditional volatility at time t.
- 6. The number of parameters in the input argument alpha determines the order of the ARCH component model.
- 7. The number of parameters in the input argument beta determines the order of the GARCH component model.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

```
int NDK_GARCH_RESID(double[] pData,
```

UIntPtr nSize,

double mu,

double[] Alphas,

UlntPtr p,

double[] Betas,

UIntPtr q,

short nlnnovationType,

double nu,

short retType

Namespace: NumXLAPI

Class: SFSDK
Scope: Public
Lifetime: Static

Returns an array of cells for the standardized residuals of a given GARCH model.

Return Value

a value from NDK RETCODE enumeration for the status of the call.

NDK_SUCCESS operation successful

Error Code

Deprecated:

this function is being replaced by NDK_GARCH_FITTED()

Parameters

[in] **pData** is the univariate time series data (a one dimensional array).

[in] **nSize** is the number of observations in pData.

[in] **mu** is the GARCH model conditional mean (i.e. mu).

[in] **Alphas** are the parameters of the ARCH(p) component model (starting with the

lowest lag).

[in] **p** is the number of elements in Alphas array

are the parameters of the GARCH(q) component model (starting with the

lowest lag).

[in] **q** is the number of elements in Betas array

[in] nInnovationType is the probability distribution function of the innovations/residuals

(see INNOVATION TYPE)

• INNOVATION GAUSSIAN Gaussian Distribution (default)

INNOVATION_TDIST Student's T-Distribution,

• INNOVATION_GED Generalized Error Distribution (GED)

is the shape factor (or degrees of freedom) of the innovations/residuals

probability distribution function.

[in] retType is a switch to select a residuals-type:raw or standardized.

see RESID RETVAL FUNC

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced.
- 3. The time series may include missing values (e.g. #N/A) at either end.
- 4. The standardized residuals have a mean of zero and a variance of one (1).
- 5. The GARCH model's standardized residuals is defined as: $[\ensuremath{\mbox{GARCH model's standardized residuals is defined as: } \ensuremath{\mbox{GARCH model's standard$
 - \(\epsilon\) is the GARCH model's standardized residual at time t.
 - ∘ \(a_t\) is the GARCH model's residual at time t.
 - $\circ \ \(x_t)$ is the value of the time series at time t.

- ∘ \(\mu\) is the GARCH mean.
- \(\sigma_t\) is the GARCH conditional volatility at time t.
- 6. The number of parameters in the input argument alpha determines the order of the ARCH component model.
- 7. The number of parameters in the input argument beta determines the order of the GARCH component model.

Exceptions

Exception Type	Condition	
None	N/A	

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

EXa	am	ומ	е	S
		-		

		•				
ĸ	Δ1	ם	rΔ	n	се	C
		-				•

Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]