NDK GLM GOF

Last Modified on 01/25/2017 8:46 pm CST

- C/C++
- .Net

Computes the log-likelihood ((LLF), Akaike Information Criterion (AIC) or other goodness of fit function of the GLM model.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See Macros for full list.

• Poisson : phi = 1.0

Parameters

neters			
[in]	Υ	is the response or the dependent variable data array (one dimensional array)	
[in]	nSize	is the number of observations	
[in]	X	is the independent variables data matrix, such that each column represents one	
		variable	
[in]	nVars	is the number of independent variables (or columns in X)	
[in]	betas	are the coefficients of the GLM model (a one dimensional array)	
[in]	nBetas is the number of the coefficients in betas. Note that nBetas must be equal to		
		nVars+1	
[in]	phi	is the GLM dispersion parameter. Phi is only meaningful for Binomial (1/batch or	
		trial size) and for Gaussian (variance).	
		Binomial : phi = Reciprocal of the batch/trial size.	
		Gaussian : phi = variance.	

is the link function that describes how the mean depends on the linear predictor (see GLM_LINK_FUNC).

- 1. Identity (default)
- 2. Log
- 3. Logit
- 4. Probit
- 5. Complementary log-log

[in] **retType**is a switch to select a fitness measure (see **GOODNESS_OF_FIT_FUNC**) [out] **retVal** is the calculated goodness of fit measure.

Remarks

- 1. The underlying model is described here.
- 2. Missing values (i.e. #N/A!) are not allowed in either the response(Y) or the explanatory input arrays.
- 3. The number of rows in response variable (Y) must be equal to number of rows of the explanatory variables (X).
- 4. The number of betas must equal to the number of explanatory variables (i.e. columns in X) plus one for the intercept.
- 5. For GLM with Poisson distribution,
 - The values of response variable must be non-negative integers.
 - The value of the dispersion factor (Phi) must be either missing or equal to one.
- 6. For GLM with Binomial distribution,
 - The values of the response variable must be non-negative fraction between zero and one, inclusive.
 - The value of the dispersion factor (Phi) must be a positive fraction (greater than zero, and less than one).
- 7. For GLM with Gaussian distribution, the dispersion factor (Phi) value must be positive.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

References

- * Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6
- * Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740
- * D. S.G. Pollock; <u>Handbook of Time Series Analysis</u>, <u>Signal Processing</u>, <u>and Dynamics</u>; Academic Press; Har/Cdr edition(Nov 17, 1999), ISBN: 125609906
- * Box, Jenkins and Reisel; Time Series Analysis: Forecasting and Control; John Wiley & SONS.; 4th

See Also

[template("related")]