NDK_INTEG

Last Modified on 04/21/2016 12:47 pm CDT

- C/C++
- .Net

```
int __stdcall NDK_INTEG(double * X,
size_t N,
size_t S,
size_t D,
double * X0,
size_t N0
)
```

Returns an array of cells for the integrated time series (inverse operator of NDK_DIFF).

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

[in,out	:] X	is the univariate time series data (a one dimensional array).
[in]	Ν	is the number of observations in X.
[in]	S	is the lag order (e.g. k=0 (no lag), k=1 (1st lag), etc.).
[in]	D	is the number of repeated differencing (e.g. d=0 (none), d=1 (difference once), 2=
		(difference twice), etc.).
[in]	X0	is the initial (un-differenced) univariate time series data (a one dimensional array).
		If missing (i.e. NULL), zeros are assumed.
[in]	N0	is the number of observations in X0.

Remarks

 The input (differenced) time series (i.e. Y) is defined as follow: \[Y_t=\left(1-L^k\right)^d X_t\] Where:

- \(\left[Y_t\right]\) is the differenced time series.
- $(\left| E[X_t]\right)$ is the input time series.
- \(L\) is the lag (backward shift or backshift) operator.
- \(d\) is the number of repeated differencing.
- 2. The initial values array is assumed to end at the last non-missing value in the difference array start

- 3. If the difference cell range includes missing values at the beginning, the result array will substute the initial values for missing ones; as we assume the initial values cover up to 1st non-missing value.
- 4. The time series is homogeneous or equally spaced.
- 5. The time series may include missing values (e.g. NaN) at either end.
- 6. The **integral transform** operator requires an SxD points in the initial time series (i.e. X0). If X0 is missing or has fewer points, points with zeros values are appended.
- 7. The time order (i.e. ascending or descending) for the initial (un-differenced) time series X0) is assumed the same as the differenced time series (Y).
- 8. Similar to the DIFF operator, INTG can be cascaded (i.e. INTG(INTG(INTG...)))), but care must be taken when you specify the initial time series for each level.
- 9. The lag order (i.e. k) must be non-negative and smaller than the time series size. \[0 \leq K \leq T-1 \]

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK_INTEG(double[] data, UIntPtr nSize, UIntPtr nLag, UIntPtr nDifference, double[] pX0, UIntPtr nX0Len) Namespace: NumXLAPI Class: SFSDK Scope: Public Lifetime: Static

Returns an array of cells for the integrated time series (inverse operator of NDK_DIFF).

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

[in,out]	t] data is the univariate time series data (a one dimensional array).		
[in]	nSize	is the number of observations in data.	
[in]	nLag	is the lag order (e.g. k=0 (no lag), k=1 (1st lag), etc.).	
[in]	nDifference	is the number of repeated differencing (e.g. d=0 (none), d=1 (difference	
		once), 2=(difference twice), etc.).	
[in]	рХ0	is the initial (un-differenced) univariate time series data (a one	
		dimensional array). If missing (i.e. NULL), zeros are assumed.	
[in]	nX0Len	is the number of observations in pX0.	

Remarks

- The input (differenced) time series (i.e. Y) is defined as follow: \[Y_t=\left(1-L^k\right)^d X_t\] Where:

 - \(\left[X_t\right]\) is the input time series.
 - \(L\) is the lag (backward shift or backshift) operator.
 - \(k\) is the seasonal difference order.
 - \(d\) is the number of repeated differencing.
- 2. The initial values array is assumed to end at the last non-missing value in the difference array start
- If the difference cell range includes missing values at the beginning, the result array will substute the initial values for missing ones; as we assume the initial values cover up to 1st non-missing value.
- 4. The time series is homogeneous or equally spaced.
- 5. The time series may include missing values (e.g. NaN) at either end.
- 6. The **integral transform** operator requires an SxD points in the initial time series (i.e. pX0). If pX0 is missing or has fewer points, points with zeros values are appended.
- 7. The time order (i.e. ascending or descending) for the initial (un-differenced) time series pX0) is assumed the same as the differenced time series (Y).
- 8. Similar to the DIFF operator, INTG can be cascaded (i.e. INTG(INTG(INTG...)))), but care must be taken when you specify the initial time series for each level.
- 9. The lag order (i.e. k) must be non-negative and smaller than the time series size. \[0 \leq K \leq T-1 \]

Requirements

Header SFSDK.H

	Library	SFSDK.LIB
	DLL	SFSDK.DLL
Exampl	les	

References

Hamilton, J .D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]