NDK_PCR_PRFTest

Last Modified on 03/14/2016 11:39 am CDT

- $\mathrm{C} / \mathrm{C}++$
- .Net

```
int _stdcall NDK_PCR_PRFTest ( double ** X,
    size_t nXSize,
    size_t nXVars,
    double * Y,
    size_t nYSize,
    double intercept,
    LPBYTE mask1,
    size_t nMaskLen1,
    LPBYTE mask2,
    size_t nMaskLen2,
    double alpha,
    WORD nRetType,
    double * retVal
)
```

Returns an array of cells for the i-th principal component (or residuals).

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful
NDK_FAILED Operation unsuccessful. See Macros for full list.

Parameters

[in] \mathbf{X} is the independent variables data matrix, such that each column represents one variable
[in] nXSize is the number of observations (i.e. rows) in X
[in] nXVars is the number of variables (i.e. columns) in X
[in] \mathbf{Y} is the response or the dependent variable data array (one dimensional array)
[in] nYSize is the number of elements in Y
[in] intercept is the constant or the intercept value to fix (e.g. zero). If missing (NaN), an intercept will not be fixed and is computed normally
[in] mask1 is the boolean array to select a subset of the input variables in X. If missing (i.e. NULL), all variables in X are included.
[in] nMaskLen1 is the number of elements in mask1
[in] mask2 is the boolean array to select a subset of the input variables in X. If missing (i.e. NULL), all variables in X are included.
[in] nMaskLen2 is the number of elements in mask2
[in] alpha is the statistical significance of the test (i.e. alpha)
[in] nRetType is a switch to select the return output ($1=\mathrm{P}$-Value (default), $2=$ Test Stats, $3=$ Critical Value.)
[out] retVal is the calculated test statistics/

Remarks

1. The underlying model is described here.
2. Model 1 must be a sub-model of Model 2. In other words, all variables included in Model 1 must be included in Model 2.
3. The coefficient of determination (i.e. $\backslash\left(R^{\wedge} 2 \backslash\right)$) increases in value as we add variables to the regression model, but we often wish to test whether the improvement in R square by adding those variables is statistically significant.
4. To do so, we developed an inclusion/exclusion test for those variables. First, let's start with a regression model with $\backslash\left(K_{-} 1 \backslash\right)$ variables: $\backslash\left[Y _t=\backslash a l p h a+\backslash\right.$ beta_1 \times X_1 + \cdots + |beta_\{K_1\} \times X_\{K_1\}\] Now, let's add few more variables
(\left(X_\{K_1+1\} \cdots X_\{K_2\}|right):
) $$
Y_t = |alpha + \beta_1 \times X_1 + \cdots + \beta_\{K_1\} \times X_\{K_1\} + \cdots + \beta_\{K_1+1\} \times X_\{K_1+1\} + \cdots + \beta_\{K_2\} \times X_\{K_2\}
$$
5. The test of hypothesis is as follows: $\backslash\left[H_{-} 0:\right.$ |beta_ $\left\{K_{-} 1+1\right\}=$ beta_ $\left\{K_{-} 1+2\right\}=$ |cdots $=$

6. Using the change in the coefficient of determination (i.e. $\backslash\left(R^{\wedge} 2 \backslash\right)$) as we added new variables, we can calculate the test statistics: $\backslash\left[\backslash m a t h r m\{f\}=\mid f r a c\left\{\left(R^{\wedge} 2_{-}\{f\}-\right.\right.\right.$ $\left.\left.R^{\wedge} 2 _\{r\}\right) /\left(K_{-} 2-K_{-} 1\right)\right\}\left\{\left(1-R^{\wedge} 2 _f\right) /\left(N-K _2-1\right)\right\} \backslash s i m$ Imathrm $\left.\{F\} _\left\{K _2-K _1, N-K 2-1\right\} \backslash\right]$ Where:

- $\backslash\left(R^{\wedge} 2 _f\right)$ is the $\backslash\left(R^{\wedge} 2 \backslash\right)$ of the full model (with added variables).
- $\backslash\left(R^{\wedge} 2 _r\right)$ is the $\backslash\left(R^{\wedge} 2 \backslash\right)$ of the reduced model (without the added variables).
- $\backslash(\mathrm{K} 11)$ is the number of variables in the reduced model.
-
(K_2
) is the number of variables in the full model.
- $\backslash(\mathrm{N})$ is the number of observations in the sample data.

7. The sample data may include missing values.
8. Each column in the input matrix corresponds to a separate variable.
9. Each row in the input matrix corresponds to an observation.
10. Observations (i.e. row) with missing values in X or Y are removed.
11. The number of rows of the response variable (Y) must be equal to the number of rows of the explanatory variables (X).
12. The MLR_ANOVA function is available starting with version 1.60 APACHE.

Requirements

References

Hamilton, J .D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley \& SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]

