NDK SARIMA GOF

Last Modified on 07/11/2016 11:06 am CDT

- C/C++
- .Net

```
int stdcall NDK SARIMA GOF(double *
                                                          pData,
                               size t
                                                          nSize,
                               double
                                                          mean,
                               double
                                                          sigma,
                               WORD
                                                          nintegral,
                               double *
                                                          phis,
                               size t
                                                          p,
                               double *
                                                          thetas,
                               size t
                                                          q,
                               WORD
                                                          nSIntegral,
                               WORD
                                                          nSPeriod,
                               double *
                                                          sPhis,
                               size t
                                                          sP,
                               double *
                                                          sThetas,
                               size_t
                                                          sQ,
                               GOODNESS_OF_FIT_FUNC retType,
                               double *
                                                          retVal
                              )
```

Computes the log-likelihood (LLF), Akaike Information Criterion (AIC) or other goodness of fit function of the SARIMA model.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See Macros for full list.

Parameters

[in]	pData	is the	univariate	time	series	data ((a one	dimensiona	I array).	
------	-------	--------	------------	------	--------	--------	--------	------------	-----------	--

 $\begin{tabular}{ll} $\tt in Size & is the number of observations in pData. \end{tabular}$

[in] **mean** is the model mean (i.e. mu).

[in] **sigma** is the standard deviation of the model's residuals/innovations.

[in] **nIntegral** is the non-seasonal difference order

[in] **phis** are the coefficients's values of the non-seasonal AR component

[in] **p** is the order of the non-seasonal AR component

[in] **thetas** are the coefficients's values of the non-seasonal MA component

[in] **q** is the order of the non-seasonal MA component

[45] 014	.1 != 4 = =							
[in] nSIntegral is the seasonal difference								
[in] nSPeriod	is the n	umber of observations per one period (e.g. 12=Annual, 4=Quarter)						
[in] sPhis	are the	coefficients's values of the seasonal AR component						
[in] sP	is the o	rder of the seasonal AR component						
[in] sThetas	are the	coefficients's values of the seasonal MA component						
[in] sQ	is the o	rder of the seasonal MA component						
<pre>[in] retType</pre>	is a swi	tch to select a fitness measure:						
	Order Description							
	1	Log-Likelihood Function (LLF) (default)						
	2	Akaike Information Criterion (AIC)						
	3	Schwarz/Bayesian Information Criterion (SIC/BIC)						
	4	Hannan-Quinn information criterion (HQC)						
[out]retVal	is the c	alculated goodness of fit value.						

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced
- 3. The time series may include missing values (e.g. NaN) at either end.
- 4. The residuals/innovations standard deviation (i.e. \(\sigma\)) should be greater than zero.
- 5. The ARMA model has independent and normally distributed residuals with constant variance. The ARMA log-likelihood function becomes: $\left(\ln L^* = -T\left(\ln 2\right) \right)$
 - \(\hat \sigma\) is the standard deviation of the residuals.
- 6. The value of the input argument period must be greater than one, or the function returns #VALUE!.
- 7. The value of the seasonal difference argument sD must be greater than one, or the function returns #VALUE!.
- 8. The maximum likelihood estimation (MLE) is a statistical method for fitting a model to the data and provides estimates for the model's parameters.
- 9. The long-run mean argument (mean) can take any value or be omitted, in which case a zero value is assumed.
- The residuals/innovations standard deviation (sigma) must be greater than zero.
- 11. For the input argument phi (parameters of the non-seasonal AR component):
 - The input argument is optional and can be omitted, in which case no non-seasonal AR component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the non-seasonal AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 12. For the input argument theta (parameters of the non-seasonal MA component):
 - The input argument is optional and can be omitted, in which case no non-seasonal MA component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the non-seasonal MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).

- 13. For the input argument sPhi (parameters of the seasonal AR component):
 - The input argument is optional and can be omitted, in which case no seasonal AR component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the seasonal AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 14. For the input argument sTheta (parameters of the seasonal MA component):
 - The input argument is optional and can be omitted, in which case no seasonal MA component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the seasonal MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 15. The non-seasonal integration order d is optional and can be omitted, in which case d is assumed to be zero.
- 16. The seasonal integration order sD is optional and can be omitted, in which case sD is assumed to be zero.
- 17. The season length s is optional and can be omitted, in which case s is assumed to be zero (i.e. plain ARIMA).

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK_SARIMA_GOF(do	ouble[]	pData,
UI	ntPtr	nSize,
do	ouble	mean,
do	ouble	sigma,
sh	nort	nIntegral,
do	ouble[]	phis,
UI	ntPtr	p,

Namespace: NumXLAPI

Class: SFSDK Scope: Public Lifetime: Static

```
double[]
                           thetas,
UIntPtr
                           q,
short
                           nSIntegral,
                           sPhis,
double[]
UIntPtr
                           sP,
double[]
                           sThetas,
UIntPtr
                           sQ,
GOODNESS_OF_FIT_FUNC retType,
ref double
                           retVal
)
```

Computes the log-likelihood ((LLF), Akaike Information Criterion (AIC) or other goodness of fit function of the SARIMA model.

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

NDK_SUCCESS operation successful

Error Code

Parameters

[in]	pData	is the univariate time series data (a one dimensional array).					
[in]	nSize	is the number of observations in pData.					
[in]	mean	s the model mean (i.e. mu).					
[in]	sigma	is the standard deviation of the model's residuals/innovations.					
[in]	nIntegral	is the non-seasonal difference order					
[in]	phis	are the coefficients's values of the non-seasonal AR component					
[in]	p	is the order of the non-seasonal AR component					
[in]	thetas	are the coefficients's values of the non-seasonal MA component					
[in]	q	is the order of the non-seasonal MA component					
[in]	nSIntegra	I is the seasonal difference					
[in]	nSPeriod	is the number of observations per one period (e.g. 12=Annual, 4=Quarter)					
[in]	sPhis	are the coefficients's values of the seasonal AR component					
[in]	sP	is the order of the seasonal AR component					
[in]	sThetas	are the coefficients's values of the seasonal MA component					
[in]	sQ	is the order of the seasonal MA component					
[in]	retType	is a switch to select a fitness measure:					
	Order Description						
		1 Log-Likelihood Function (LLF) (default)					

1	Log-Likelihood Function (LLF) (default)
2	Akaike Information Criterion (AIC)
3	Schwarz/Bayesian Information Criterion (SIC/BIC)
4	Hannan-Quinn information criterion (HQC)

[out] retVal is the calculated goodness of fit value.

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced
- 3. The time series may include missing values (e.g. NaN) at either end.
- 4. The residuals/innovations standard deviation (i.e. \(\sigma\)) should be greater than zero.
- 5. The ARMA model has independent and normally distributed residuals with constant variance. The ARMA log-likelihood function becomes: $\Gamma = -T\left(\ln L^* = -T\left(\ln 2\pi \right) \right)$ Where:
 - \(\hat \sigma\) is the standard deviation of the residuals.
- 6. The value of the input argument period must be greater than one, or the function returns #VALUE!.
- 7. The value of the seasonal difference argument sD must be greater than one, or the function returns #VALUE!.
- 8. The maximum likelihood estimation (MLE) is a statistical method for fitting a model to the data and provides estimates for the model's parameters.
- 9. The long-run mean argument (mean) can take any value or be omitted, in which case a zero value is assumed.
- 10. The residuals/innovations standard deviation (sigma) must be greater than zero.
- 11. For the input argument phi (parameters of the non-seasonal AR component):
 - The input argument is optional and can be omitted, in which case no non-seasonal AR component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the non-seasonal AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 12. For the input argument theta (parameters of the non-seasonal MA component):
 - The input argument is optional and can be omitted, in which case no non-seasonal MA component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the non-seasonal MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 13. For the input argument sPhi (parameters of the seasonal AR component):
 - The input argument is optional and can be omitted, in which case no seasonal AR component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the seasonal AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 14. For the input argument sTheta (parameters of the seasonal MA component):
 - The input argument is optional and can be omitted, in which case no seasonal MA component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the seasonal MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 15. The non-seasonal integration order d is optional and can be omitted, in which case d is assumed to be zero.

- 16. The seasonal integration order sD is optional and can be omitted, in which case sD is assumed to be zero.
- 17. The season length s is optional and can be omitted, in which case s is assumed to be zero (i.e. plain ARIMA).

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

R	e	f	e	re	n	C	e	S
---	---	---	---	----	---	---	---	---

Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]